-------------------------------------------------------------------------- Kitchen Improvised Plastic Explosives II by Tim Lewis Published by Information Publishing MCMDXXXVI OCR'ing and editing: Thallion * Scanner and Pentium: The Effacer Transcribed to the electronic media in the year of 1995. -------------------------------------------------------------------------- Table Of Contents: 1: C-4 Plastique 2: RDX Mfg 3: Acetic Anhydride Mfg 4: Nitromethane 5: Nitro Methane Plastique #1 6: Nitro Methane Plastique #2 7: Composite Plastique #1 8: Composite Plastique #2 9: Myrol (Methyl Nitrate) 10: Methyl Nitrate Plastique #1 11: Methyl Nitrate Plastique #2 12: Nitric Acid 13: Nitric Acid Plastique #1 14: Nitric Acid Plastique #2 15: Red Phosphorus - Coffee - Silicon Oil 16: Silicone Oil / RDX Plastique #2 17: Silicone Oil / Nitro Mannite Plastique #3 18: Silicone Oil / Ammonium Perchlorate P. #4 19: Silicone Oil Plastique #5 20: Silicone Plastique #6 21: Nitro Glycol Mfg 22: Nitroglycol Plastique 23: PETN 24: Detaflex Equivalent Plastique 25: Nitrostarch Mfg 26: Nitrostarch Plastique Mfg 27: Pentryl 28: Potassium Perchlorate Plastique -------------------------------------------------------------------------- C-4 PLASTIQUE One of the most famous and widely used plastique explosive in use today. This is due to the extremely high performance, good storage stability, water resistance, high detonation rate and relative low cost. The manufacture of C-4 was covered in Kitchen Improvised Plastic Explosives. But the R.D.X. manufacture method (Henning method) has a low yield. This method yields type A R.D.X. While type A R.D.X. is of high power the type B R.D.X. covered in the section on R.D.X. manufacture in this book is of greater power. This type B R.D.X. has a 10% impurity of H.M.X.. H.M.X. is a greater power explosive than is R.D.X. and has very desirable explosive properties. This type B R.D.X.is actually the explosive called for in the military specifications for C-4 manufacture. C-4 is cheap because of the polyisobutalene (P.I.B.) binder/plasticizer used. P.I.B. is widely used in the manufacture of calking compounds and even used in Bazooka bubble gum. This would be a possible source of the plasticizer for home C-4 manufacture. The P.I.B. compound desired should have a molecular weight of over 1,000,000. One source of this is from Gulf Oil Co. (chemical division) under the product designation of MM-120. Ethyl hexyl sebacate is available as a plasticizer component in many chemical and manufacturing processes. Motor oil is available from any auto parts house or even K-Mart. The solvent used in the manufacture is unleaded gasoline (Heptane). The detonation rate of this explosive will be over 8000 M/sec. This will yield an explosive identical to the military C-4. It can be used for any high explosive work such as demolitions and fabrication of shaped charges. The closest commercial product is the Detaflex series if explosives as made and distributed by DuPont. These are not the same but their uses would be very similar. MANUFACTURE Place 21 grams of finely powered polyisobutylene in a glass container. To this is added 100 ml of unleaded gasoline (camp stove gasoline). This is allowed to stand until the P.I.B dissolves completely. To this liquid is added 53 grams of ethyl hexyl sebecate (Di-(2-ethylhexyl) sebecate) and 16 grams of ten weight nondetergent motor oil. Allow 60 ml of the gasoline to evaporate and then mix, by kneading with gloved hands, with 910 grams type B R.D.X. (see R.D.X. section of this book). This is kneaded until a uniform mixture is formed. It is then rolled out thin and allowed to set for two hours. It is again kneaded for S minutes with gloved hands. This rolling out and kneading process is repeated until the gasoline can no longer be smelled. The final product will be plastic from -60 to 170 degrees F. It will be a dirty white to light grey in color and will have the consistency of a stiff putty. P.E.T.N. could replace all or part of the R.D.X. as could most crystalline high explosives. Acetic anhydride is commonly available and thus most likely could be bought. The commercial product as always will be more consistent and much easier and more expedient. This process does however work. Efficiency is in the 85 to 90% range based on the amount of acetone used. R.D.X. MFG. KA PROCESS- The "KA" process is a modified process for the nitration of hexamine to R.D.X. It is not as easy as the "E" process but yields are very good and it requires less acetic anhydride. It does require concentrated nitric acid (90%+) and requires the hexamine to be nitrated to it's dinitrate form first. The product does not contain as much H.M.X. as a byproduct. This amount will be approximately 1-3% H.M.X. The "KA" process requires smaller amounts of chemicals due to the lower amount of water produced. CAUTION: Nitric acid and acetic anhydride are both very dangerous chemicals. They are caustic and dangerous. The vapors and all contact with them should be avoided. This procedure should be done with good ventilation and with proper protective gear. PROCESS- Dissolve 50 grams of hexamine (see Kitchen Improvised Plastic Explosives) in 150 ml. of water. To this is added 70 ml. nitric acid (70%) until the solution is acid to litmus paper. A white precipitate is formed and is filtered out of the solution. This precipitate is hexamine dinitrate. It is thoroughly dried and is ready for the next step of the process. 95 grams of this white dinitrate is placed in a beaker or wide mouth jar. In another container place 60 grams of ammonium nitrate and 47 grams of 90%+ nitric acid. To the 95 grams of white dinitrate add 228 grams of acetic anhydride. Add the ammonium nitrate/nitric acid mixture to the acetic acid/hexamine dinitrate solution. A vigorous reaction will take place. After the reaction subsides the liquid is filtered. The product thus obtained is washed twice with cold water twice with boiling water. It is dried and dissolved in the least amount of boiling acetone possible. This acetone is chilled and the product will fall out. Reduce the volume of the acetone to 1/2 by boiling and chill and filter again. Allow the acetone to evaporate and the type "B" R.D.X. is ready to use. CAUTION: Acetone is very flammable and great care should be used in handling it. Avoid breathing the fumes of acetone. E. PROCESS- This process was developed by the Germans initially prior to WWII. It is still in use today for the manufacture of Type B R.D.X. Military specifications for C4 call for type B R.D.X. This is due to the higher performance of this grade. 10% of the final product is H.M.X. It has much more power than the R.D.X. component in the final product of the "E" process. The basis for this process is the ease of manufacture of the R.D.X. Acetic anhydride, ammonium nitrate and paraformaldehyde. Acetic anhydride is a very common industrial chemical and at the time of this writing can be purchased for $220.00 per 398 lbs. Ammonium nitrate is available as a common fertilizer. It's cost is approximately $7.00 for 50 lbs. in it's fertilizer form. Parafomaldehyde is available as another common industrial chemical. It is also possible to evaporate the 37% aqueous formaldehyde solution to dryness to obtain paraformaldehyde. Paraformaldehyde costs at the time of writing around sixty cents per pound. Thus it is feasible to make home C4 for under four dollars per pound. This process is very simple and requires a minimum of equipment. This is also a very safe process if the instructions are followed and the fumes produced by the reaction mixture avoided. PROCESS: Place 260 ml acetic anhydride in a one gallon jar. To this add 105 grams of ammonium nitrate in the acetic anhydride. This is placed in a pan partially filled with cooking oil. This is heated to 70-90 degrees C. After reaching this temperature begin an addition of 38 grams of paraformaldehyde. This addition is done in four 9.5 gram portions. CAUTION: This addition will produce fumes that are hazardous and flammable. This should be done with very good ventilation. Paraformaldehyde is a cancer causing agent. A mask and gloves should be worn while handling it. Acetic anhydride and it's vapors are hazardous and all contact should be avoided. It is caustic and very flammable. Allow the reaction to subside before the next addition. After all the additions have been made, take the reaction vessel out of the oil bath and allow it to cool. The crystals of type "B" cyclonite will form. These crystals are filtered out of the liquid. Filtering is best done in a vacuum (e.g. Buchner) filtering apparatus. CAUTION: The liquid remaining is glacial acetic acid. Avoid contact and the fumes. This liquid can then be changed back into acetic anhydride in the process in that section. There is still product dissolved in the glacial acetic acid. If the liquid is to be turned back into acetic anhydride these crystals will fall out in the liquid after the acetic anhydride is formed and could be filtered out after the chemical recovery. If this recovery step is not desired then dilute the remaining reaction liquid from above after removal from the oil bath and it's subsequent cooling. All the crystals will fall out and can be recovered then by filtering. In either case the product should be washed twice with water, twice with boiling water. The product is then dissolved in the least amount of hot acetone possible. Acetone is a common solvent and can be found at any hardware store or paint store. This saturated solution is then cooled and chilled and the final product will fall out as crystals. The resulting fine white to buff colored powder is type "B" cyclonite and is ready to use in plastique explosive manufacture or other suitable uses. ACETIC ANHYDRIDE MFG. Acetic anhydride is a common industrial chemical. It is used for synthetic polyester manufacturer. It is a highly dehydrated acetic acid compound. lt is dehydrated by the addition of ketane gas to acetic acid. The acetic acid produced by the "E" process as a by product is fortified to it's original anhydride form by the addition of this ketane gas after filtering out the product from the reaction liquid. Acetic acid is also readily available from photo developers as a common photography chemical. Acetone is available from hardware stores or paint stores as a common solvent. This process reacts the acetone by heat into the necessary ketane gas and it is subsequently absorbed by acetic acid to form the acetic anhydride product. This is attractive due to the ability to recycle the chemicals for other batches. CAUTION: Acetic anhydride is a caustic dangerous chemical. It's vapors are harmful and should be avoided. All contact should be avoided. It is also highly flammable and should be used with the utmost caution. Wear appropriate protective clothing. PROCESS- Acetic anhydride is produced by absorption of ketane vapors in acetic acid. Acetone is injected into a chrome/iron alloy pipe through one end equipped with a feed valve and assembly. This pipe is previously purged with argon or nitrogen. The pipe is heated to 650 to 670 degrees C. This heating can be done by electric heat with a thermostat or by a coal or gas fired oven. The injection of acetone into the reaction tube is begun when the proper temperature is reached. The other end of the pipe is attached to a stainless steel 3/8" tubing. This tubing is placed through a two hole stopper in a gallon jar placed in a salted ice bath. This is to collect all unreacted acetone. In the other hole in the stopper on this bottle is placed a second stainless steel tubing. This goes to another gallon jar through a two hole stopper. In this jar is placed the acetic acid. The second hole in this stopper is placed in line for venting purposes. This line is placed outside or in a safe place for the poisonous fumes to go. Acetone is injected slowly into the chrome/iron pipe @ 650 to 670 degrees C. This will react approximately 15-25% of the acetone into ketane. The vapors from the reactor is directed into the first bottle. The unreacted acetone will collect here. The ketane vapor will continue through the tubing to the next jar. The ketane vapors are absorbed here by the glacial acetic acid. These vapors are absorbed until the density of the liquid is 1.08 @ 20 degrees C. This is checked by a hydrometer placed in the glacial acetic acid. At the time this specific gravity is reached the material in the second jar is acetic anhydride. If glacial acetic acid is used from previous "E" process filtering then the acetic anhydride will need to be filtered to remove the remaining type "B" R.D.X. CAUTION: Acetone is highly flammable. Great care is needed to ensure total absence of air in the reactor prior to injection of acetone. Failure to do this can result in an explosion. The whole reaction should be done with very good ventilation. +---------------------------------------------------------------+ | | V | +---------+ | | | ________________ | | Acetone |------------------------------->[Chrome/Iron Pipe]----+ | | | ^^^^^^^^^^^^^^^^ | | +---------+ Heat, 650-670øC | | | | | | ^ | | To vent | +-------------+ | | | | | | | +-------------+ | +-------------+ | | | | | | | | | | Glacial | | | Condensing | | | | acetic acid | | | tank | | | | | | | surrounded | | | | | | | by ice bath | | | | | | | | | | +-------------+ | +-------------+ | | ^ | | ^ | | | | | | | | +---------+ | +---+ | +-----------+ NITROMETHANE Nitromethane is a powerful component of high explosives mixtures. It would lend itself easily to plastique manufacture producing very high power mixtures. Literature produced by other writers on the two component explosive mixtures claims these Astrolite explosives to be the most powerful non-nuclear explosives in existence. I suspect this hype was created to sell books. In short it is a totally erroneous statement. There are explosives in existence that are much greater in both detonation velocity and brisance. Explosives containing nitromethane are very powerful. Their power is greater than Picric Acid and T.N.T. Nitromethane is a common solvent. It is prepared industrially by the vapor phase nitration of methane at 400-500 degrees C. It can also be prepared by a lab process. Both of these processes are prohibitive due to the equipment and processes. Both of these are restrictive to someone that has had a great deal of laboratory experience and knowledge of proper setups and procedures. Nitro methane is a common solvent and is also used as a racing fuel (dragracing and formula car) in mixtures with methanol. It can be purchased from racing suppliers. It is however very expensive and this could be a very important aspect for a home or small scale manufacturer. Nitromethane is also available in a premixed model airplane fuel (35% nitromethane). This is what we will cover below. This explosive liquid is separated from the castor oil and methanol by a vacuum distillation. This should yield a product of suitable purity for excellent performance. SEPARATION FROM HOBBY RACING FUEL Obtain some model airplane racing fuel (e.g. SIG Champion 35, SIG Corporation). This or an equivalent is available from a hobby store. Plåce one quart in a 2000 ml flask or a narrow necked gallon jar. Place a one hole stopper in this container with a stainless or glass tubing running just through the stopper. The other end of this tubing is placed through another stopper (two hole) fitted into another gallon jar or flask. This tubing should reach to the bottom of the second container. The second hole in this stopper is hooked to a vacuum source. The first flask is placed in a hot oil or water bath at 50 degrees C. The second jar is placed in a salted ice bath. The vacuum is then drawn. The nitro methane and methanol will begin to collect in the second container. This is continued until only about 5-10% of the solution in the first flask remains. The liquid from the second flask is removed after the vacuum is released. This is poured into a shallow pyrex or stainless steel pan or dish. Let this set over night. This will allow the methanol to evaporate. The remaining liquid is 85-95% nitro methane with the remainder being methanol. This compound will work almost as well as a pure compound. LAB PREPARATION: Place 500 grams chloroacetic acid and 500 grams cracked ice in a gallon jar or three liter beaker. Add ten drops of phenolphthalein indicator solution. Begin adding a cold 40% (sodium) hydroxide (lye) solution to the mixture in the beaker. This is done until the solution changes color. The temperature during this addition is kept below 20 degrees C. To this is added 365 grams of sodium nitrite in 500 ml of water. This mixture is placed in a three liter round bottom flask fitted with a thermometer dipping down into the solution. A stopper is placed in the flask with a condensing column in line angling downward from the tip of the flask. The end of the condenser is placed in a beaker or flask. The solution in the flask is heated to 80 degrees C. At this point the solution will begin a reaction and the heat source is turned off. The temperature will raise to 100 degrees C. The nitro methane vapors with water vapor will condense in the downward condensor and will collect in the flask or beaker under the condenser. After the reaction subsides heat is then applied to the first flask until the temperature of the liquid inside reaches 110 degrees C. The nitro methane will cease it's generation. The solution that has condensed will be water and nitro methane. The nitro methane for the most part will separate. The nitro methane formed is separated from the water by decanting. The water has 1/3 it's weight of sodium chloride (noniodized salt). This will drop out the nitro methane dissolved in the water. This is separated and added to the nitro methane from above. This will yield 125 grams crude nitro methane. This can be purified by redistilling from calcium chloride. This should only be done by someone very experienced in chemical laboratory procedures. COMMERCIAL PRODUCTION 96 grams of methane is passed with 63 grams of nitric acid vapors through a 316 stainless steel reaction tube. This tube is heated to 475 degrees C. before the gasses are run through the tube. They should stay at this temperature for only one tenth of a second. They are then cooled and the nitro methane is then condensed out of the tube by surrounding the tube with a jacket full of circulating cold water. Yield will run from 70-95% of theoretical. This as you can tell would be difficult to do in a lab set up without a very great expenditure of time, money and effort. ___________ /__________ \ H // \ \ Thermometer -> H // \ \ H H ___\ \_ ############ \ \ Condensor ############ \ \ | H H | \ \ | H | \__ _\ | H | \ \ | H | \ \ | H | | | / H \ | | / H \ |_| / H \ / H \ _______ | H | | | | H Round | | | | H Bottom | |_____| | H Flask | \ H / Beaker \ H / \ / \_______________/ ^^^^ Heat, 80øC NITRO METHANE PLASTIQUE #1 This plastique explosive is similar to the Astrolite explosives. Detonation velocity is high in the 7000-7500 M/sec. range. Brisance is good as is the detonation pressure produced. This explosive would find uses in shaped charges and as a standard demolition explosive. It has the drawback of the nitro methane being very volatile. This would limit the storage stability of the finished explosive. This of course could be controlled by storing finished explosives in a cold magazine to reduce this evaporation tendency. The addition of the glass microballons (microspheres) is necessary to reduce the density and therefore give a product that has good detonation tendencies and sensitivity. MANUFACTURE- Place 600 grams of nitro methane in a plastic bowl or similar container. Add to this a mixture of 200 grams ammonium nitrate and 60-70 grams of nitrocellulose. The nitrocellulose can be smokeless powder (IMR type), nitrostarch or guncotton. Add 10ml. acetone and 45 grams of microballons. This whole mixture is kneaded together with gloved hands for 5-10 minutes until a very uniform mixture has formed. This kneading should be done carefully to avoid breaking the microballons. The resulting putty is a high power explosive sensitive to a #6 cap. Store this putty in a cool place until ready for use. If this is not possible then make up as needed. NITRO METHANE PLASTIQUE #2 This plastique explosive is very simple to make. It makes use of the tendency of nitromethane to gelatinize or collidanize nitrocellulose. The nitromethane used in this process is obtained from model airplane racing fuel. The fuel used is 35% nitromethane content. Ammonium nitrate and glass microballons or powdered styrofoam are used. As in other explosive compositions the glass microballons (microspheres) are used to reduce the density of the explosive thus sensitizing it to detonation from a #6 blasting cap. This novel explosive does not require the nitromethane to be separated out of the model airplane fuel. This explosive will be the equivalent of 75% dynamite. Brisance is very high and detonation rate should be around 6000-6600 M/sec. MANUFACTURE- Place 200 grams of 35% nitromethane model airplane racing fuel in a glass container (jar). Add to this 30 grams IMR smokeless powder (DuPont) in the racing fuel and let set for three days. The nitromethane will gel the nitrocellulose (smokeless powder) and after this amount of time the gooey gelled nitromethane/nitrocellulose is scooped out of the liquid with a spoon. The oil remaining on the goo is allowed to run off and the gelled nitromethane is then mixed with 210 grams of finely powdered ammonium nitrate fertilizer. This is kneaded with gloved hands until a very uniform mixture is obtained. To this putty is added 8-10 grams of microspheres or powdered styrofoam. This is again kneaded with gloved hands until a uniform mixture is obtained. This explosive putty is then ready to use. It may be stored in a cool dry place. If after storage the putty hardens somewhat the addition of 2-3 grams acet,one after kneading in will return the explosive to a very soft putty form. COMPOSITE PLASTIQUE #1 This explosive composition is simple and cheap to make. Unlike other compositions in this book this composition is as simple as making bread dough or other similar very familiar processes. This mixture is cap sensitive but would require it's use in larger quantities than explosives containing crystalline high explosives. Ingredients are simple to find and cheap. Hexamine is available as army ration heating tablets. Nitric acid can be either bought or made (see nitric acid MFG.). Ammonium nitrate is available as a (common) fertilizer. Sodium nitrate is commonly available from chemical suppliers. Potassium perchlorate can be obtained from fireworks suppliers. Guar gum is obtained from oil well drilling mud suppliers, Henkel Corp. (Minneapolis, Minn.) or other suppliers. Detonation velocity is not as high as others but this explosive is powerful and brisant. Detonation velocity should be around 5500 M/sec. This explosive should be made up as needed to ensure the gell is good and stiff. MANUFACTURE- In a large mouth gallon jar place 60 ml. of water. In this liquid dissolve 40 grams of hexamine (see Kitchen Improvised Plastic Explosives for manufacture instructions). Add nitric acid of any strength available to this solution until it has a Ph value of 5.0-5.4. This can be checked with litmus paper (e.g. E Merick brand). The addition of the acid to this liquid should be done at such a rate so the temperature does not rise above 66 degrees C. To this liquid add 12 grams of potassium perchlorate, 16 grams of sodium nitrate and 80 grams of ammonium nitrate. This mixture is stirred until all the solids dissolve into the solution. To this liquid add 161 grams of ground ammonium nitrate mixed with 6 grams of guar gum. Stir the mixture until it begins to thicken appreciably. Dissolve 1/2 gram of potassium dichromate in 1-2 ml. of water and add into the mixture with stirring. Stir until this crosslinking agent is thoroughly dispersed throughout the gelled explosive. To this gelled explosive add 20 grams of very fine aluminum powder. This is stirred or kneaded (with gloved hands) into the explosive gell. Without this aluminum addition the explosive will not be cap sensitive. This explosive is then placed in a moisture free storage place. This gell will only keep 6 months at ordinary temperature. It would be made up only as needed. COMPOSITE PLASTIQUE #2 This plastique is a water gell type explosive. It is sensitized with monomethylamine nitrate. This is formed by the reaction of formaldehyde or paraformaldehyde with ammonium nitrate. These ingredients are widely available and are cheap and easy to obtain. Density will range from .6 to 1.2 G./cc. Detonation velocity will not be as high as other plastique explosives in this publication. It is however sensitive to an A.S.A. #6 blasting cap. This reaction is a methylation of the ammonium nitrate component by the methyl group of the formaldehyde. This while being a very simple explosive to make has the drawbacks of low detonation velocity and it is hygroscopic. Protection from moisture is needed. The gell could be protected by storing in Ziplock plastic bags, jars, plastic containers and by spooning into polyethylene tubes (2-5 mil.) Larger charges should be used as very small quantities could give inconsistent detonation. MANUFACTURE- Place 300 grams paraformaldehyde and 300 grams of ammonium nitrate in a stainless steel pan. Add 65 ml of water and place the lid on the pan. Heat the liquid to 4045 degrees C. A reaction will take place. It will generate heat and should then be removed from the heat source. This reaction should be allowed to run at temperatures less than 95 degrees C. This can be done by checking the temperature with a thermometer. If the temperature rises above 95 degrees C. immerse the pan bottom into a dishpan or similar container filled with cool water. Water should be added to maintain the liquid level. Let the reaction run into completion and the foaming will cease (1-2 hours). Sodium hydroxide (lye) is added at this time to neutralize the formic acid produced as a by product of the reaction. Water content of this liquid should be 8-10% To this liquid is added 39 grams powdered sodium nitrate, 55 grams powdered sodium perchlorate and 16 grams powdered sulfur. This is stirred until all the solid is dissolved. Of course the sulfur will not dissolve. 8 grams guar gum is added while stirring. The liquid will thicken. 1/4 gram of sodium dichromate is dissolved in 1 ml of water and is added to the thickening explosive gell. It is then stirred until a homogeneous mixture is obtained. This gelled explosive is then ready to use. Storage life of this explosive will be 3-6 months in ordinary magazine conditions. Storage at elevated temperatures will destroy the gell matrix and result in a poor explosive composition. This explosive is best made as needed. Protection from moisture is needed in storage and in use. MYROL (Methyl nitrate) Myrol was developed as a substitute explosive by the Germans at the end of WWII. Myrol is one of the most brisant explosives known. Prior to this application it was considered inferior to other explosives due to it's poor storage stability. This instability was due to early manufacture processes and their tendency to leave acidity in the final product. The process developed by the Germans in the latter part of the war when explosives were in short supply and stretching agents and substitute explosives were used. This manufacture process was a distillation from the nitration acids instead of the nitroglycerin type nitration used earlier. This explosive requires only methanol alcohol and nitric and sulfuric acids. Also required is the nitric acid still from the nitric acid section of this publication. With simple manufacture and easily acquired ingredients this is a very attractive choice. Methyl nitrate is less shock sensitive than nitroglycerin or nitroglycol but is slightly less sensitive to friction. MANUFACTURE- In a beaker or wide mouthed jar place 125 grams nitric acid (70%) density 1.42. Add to this 40 grams of concentrated sulfuric acid. CAUTION: Nitric and sulfuric acid are corrosive and dangerous. Fumes and all contact with them should be avoided. Proper clothing and protective equipment should be used! To this is added drop by drop with stirring, 40 grams (50 ml.) of anhydrous methanol alcohol with one gram urea (fertilizer) dissolved in it. Keep the temperature below 10 degrees C. during the addition by regulation of the amount of methanol added. After all the methanol has been added pour the cold acid mixture into the 2000 ml erlenmeyer flask in the nitric acid still (see nitric acid section). This should be done slowly and very carefully avoiding bumps between the reaction beaker and the flask. This "still" should be cleaned thoroughly before and after use. To the liquid in the flask add 5 grams of urea (fertilizer). (Place the stopper in the flask and the second jar of the clean still is placed into an ice bath.) The first distillation flask is placed in an oil bath heated to 40 degrees C. This should be done remotely if possible. The vacuum is applied and the methyl nitrate will immediately begin to come over and collect in the second flask. Yield should be 60 grams of methyl nitrate. Remove the vacuum immediately when this much liquid is in the second jar. Add 10 grams of methanol to the liquid in the second jar and swirl until mixed. Test the Ph of the liquid with Ph paper (E. Merick). The reading should be between 6 and 7. If it is less, add small quantities of sodium bicarbonate and test. This is done until the mixture is between 6 and 7 Ph. This is liquid myrol. It will detonate at velocities of 7500-800 M.sec. It is more powerful than T.N.T. and R.D.X. and is one of the most brisant explosives known. CAUTION: Myrol is a dangerous compound. The addition of methanol reduces the sensitivity of the liquid but caution should be used in handling this explosive. At no time should flame or other source of ignition be in the proximity of this myrol mixture. Flame and subsequent local overheating will cause a high order detonation! Avoid contact with myrol or finished explosives as this compound like other nitro esters will cause cardiovascular dilation. +-----------------+ +---------> To Vacuum source | | | +-----------------+ | +------------+ | | | | | | Mixed Acid | | | Condensing | | Myrol Nitration | | | Flask or | | Liquids | | | Tube | | | | | | | | | | | | | | | | +-----------------+ | +------------+ ^^^^ | ^ Heat, 40øC | | +-------------+ METHYL NITRATE PLASTIQUE #l This explosive plastique is a very powerful one. Myrol or methyl nitrate is easily prepared from easily available materials. This plastique has the drawbacks of extreme volatility and the tendency to cause cardiovascular dilation. Volatility can be controlled by storage in a cool or cold place in a sealed container. The physical effect can be controlled by avoiding contact with the finished explosive and or any form of a methyl nitrate containing mixture. Cap sensitivity of the explosive is very good while impact sensitivity is low. Friction sensitivity of myrol or methyl nitrate is high thus friction should be avoided. Power of the plastique will be slightly higher than C4 due to the extremely high power of the myrol (methyl nitrate) explosive ingredient. All that is needed for this plastique is myrol (methyl nitrate) and I.M.R. type smokeless powder (DuPont brand available from sporting goods shops) or nitrostarch. Detonation velocity should be around 7800-8000 M/sec. with unusually high brisance. This explosive is a better explosive than is C4 except from a storage standpoint. MANUFACTURE- Place 500 grams of Myrol (methyl nitrate) in a plastic bowl. To this is added with very gentle stirring 50 grams of smokeless powder or nitrostarch. The mixture will immediately begin to thicken. Continue the gentle stirring until the mixture takes on the consistency of putty and is very uniform. This explosive is then stored in a cool dry place in a container with a nonscrew type CAUTION: Avoid contact with the finished product or the myrol additive. Contact will cause unbearable headaches and continued contact will result in heart disease. Myrol is friction sensitive and flame sensitive and care should be taken in handling this explosive liquid and products made from it. METHYL NITRATE PLASTIQUE #2 This explosive is a powerful one. Myrol or methyl nitrate is easily prepared from easily available materials. This plastique has the drawbacks of extreme volatility and the tendency to cause cardiovascular dilation. Volatility can be controlled by storage in a cool or cold place in a sealed container. The physical effect can be controlled by avoiding contact with the finished explosive and or any form of a methyl nitrate containing mixture. Cap sensitivity of the explosive is very good while impact sensitivity is low. Friction sensitivity of myrol or methyl nitrate is high but in this composition it would be very low due to the ammonium nitrate (33-0-0 fertilizer) in the explosive composition. Power of the plastique will be less than C-4 but will still be much more powerful than Picric Acid or other high power explosives. All that is needed for this plastique is myrol (methyl nitrate) and I.M.R. type smokeless powder (DuPont brand available from sporting goods shops) or nitrostarch and ammonium nitrate (fertilizer grade). Detonation velocity should be around 7200-7500 M/sec. with unusually high brisance. This explosive is as good an explosive as C-4 except from a storage standpoint. It does have a lower detonation velocity but has extremely high brisance and gas production upon detonation. MANUFACTURE- Place 500 grams of myrol (methyl nitrate) in a plastic bowl. To this is added with very gentle stirring 50 grams of smokeless powder or nitrostarch. The mixture will immediately begin to thicken. Continue the gentle stirring until the mixture takes on the consistency of putty and is very uniform. The addition of 500 grams of ammonium nitrate in a finely powdered form and 50 grams of powdered aluminum with stirring is then made. Stir gently until a very uniform mixture is obtained. This explosive is then stored in a cool dry place in a container with a nonscrew type lid. CAUTION: Avoid contact with the finished product or the myrol additive. Contact will cause unbearable headaches and continued contact will result in heart disease. Myrol is friction sensitive and flame sensitive and care should be taken in handling this explosive liquid and products made from it. NITRIC ACID Nitric acid is the most important acid for home manufacture of explosives. It is the primary acid used in nitrations. Nitrations produce a good many explosive compositions. Most commercial nitric acid is a 70% strength with a density of 1.4 G/cc. This acid is too weak for most nitrations. The process below will give an apparatus and procedure to make a 95-100% grade of acid with a density of 1.52 G/CC. This acid is of sufficient strength to perform most nitrations requiring a strong acid. Precursors are sulfuric acid 98% (density 1.8), technical 70% nitric acid or sulfuric acid as above and sodium or potassium nitrate. The sulfuric acid is available in grocery stores as drain opener and at janitorial or plumbing suppliers, Battery acid can be used if it is boiled remotely until white fumes are given off. Technical nitric acid is available from most commercial suppliers and is available from gallon sizes to drum sized quantities. Potassium nitrate is available as a stump remover from garden supply stores or from chemical suppliers. Sodium nitrate is available from chemical suppliers and as a fertilizer. Ammonium nitrate will also work but is deemed inferior to the two nitrate salts above. CAUTION: Sulfuric acid and nitric acid are caustic agents. Contact with skin and breathing of vapors could very well be fatal. Use with proper protective clothing and with very good ventilation. NITRIC ACID MANUFACTURE- In a 2000 ml. erlenmeyer flask place 500 grams technical grade nitric acid. Add to this 500 grams concentrated sulfuric acid. Obtain or make a viton stopper to fit this flask. It should have one hole in it to accept 3/8" 316 stainless steel tubing. Tubing should just reach through the stopper. The other end of this tubing should be placed through another viton stopper with two holes in it. The tubing should reach all the way to the bottom of the gallon jar used to catch the nitric acid. This gallon jar is placed into a salted ice bath. This ice bath should surround most of the jug. The other hole of the stopper should have a line running to an operating vacuum source. The pressure is reduced to ensure the highest yield possible. Place the flask containing the acid in a frying pan filled with cooking oil and heat to 220 degrees F. Turn the water on to the asperator vacuum source and pull a vacuum on the whole system. Nitric acid will distill over into the gallon jar where it is cooled and is not affected by the vacuum. Run the setup until there is 500 ml. remaining in the flask. The vacuum is unhooked and the acid in the gallon jar is ready for use. If the sulfuric acid/nitrate salt is to be used simply place 400 grams sulfuric acid in the flask. 680 grams of potassium nitrate or 580 grams of sodium nitrate is then added. The apparatus is run the same way as the tech. nitric acid/sulfuric acid process above. +------>-------+ +---------> To Vacuum source | | | +----------+ +------------+ | | | | | | | Mixed | | Condensing | | | nitric | | Flask or | | | and | | Coil | | | sulfuric | | | | | acids | __| |__ | | | | | | | | +----------+ | +------------+ | | ^^^^ | Ice Bath | | Heat |________________| | | | +------------+ NITRIC ACID PLASTIQUE #l This nitric acid (Sprengal) explosive exhibits good plasticity and power. It is corrosive and cannot be handled bare handed. It detonates with a velocity of 7100 M/sec. It is a stiff sticky gel explosive with plastic properties. This gel as with other nitric acid gels are easily made and in fact are simple to make. They have good cap sensitivity and high detonation rates with very good brisance. They would be a good choice for home manufacture due to these properties. If the charge were to be placed and primed for awhile, blasting caps would need to be coated with wax or paraffin to protect them from the nitric acid in this explosive mixture. This plastique requires a #8 blasting cap for top performance and reliable initiation. MANUFACTURE- Place 375 grams of 98% nitric acid in a wide mouth fruit canning jar (Ball, etc.). To this is added slowly with stirring 125 grams of powdered polymethylmethacrylate resin (Lucite, Plexiglass, Crystalite or PMMA). This can be obtained in sheet or bar form and powdered with a wood rasp. This mixture is heated in an oil bath or water bath to 38 degrees C. and stirred for 45 minutes. The product will have a density of 1.3 G/cc. Another composition with a less stiff gel and a higher detonation velocity can be had by mixing as above 410 G. 98% nitric acid and 90 grams of PMMA. As mentioned above this composition is corrosive and should be stored in a glass or wax lined container. Plate dent brisance test comparisons of nitric acid plastiques compared to C-4 and T.N.T. The chart is "Depth in inches". 3/4" mild steel plate used. +--------------------------------------------+ | | .10 | %%%%%%%%% | .09 | %%%%%%%%% | .08 | %%%%%%%%% %%%%%%%%% | .07 | %%%%%%%%% %%%%%%%%% %%%%%%%%% | .06 | %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% | .05 | %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% | .04 | %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% | .03 | %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% | .02 | %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% | .01 | %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% | | %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% | +--------------------------------------------+ C-4 NA- T.N.T. 70% Plastique Dynamite #1 NITRIC ACID PLASTIQUE #2 This explosive is another sprengel type explosive using nitric acid as an oxidizer. Nitric acid used, again is a high strength acid (95%+). This explosive makes use of another plastic polymer. Polystyrene is a very common plastic. It is commonly available as foamed packing "peanuts". It is also used for molded products and molded interior shipping protection for finished goods. This explosive is very high in detonation velocity and brisance. It, as with all nitric acid plastiques, makes a good demolition explosive and would find much use in shaped charges. This explosive has good storage stability but due to the nitric acid oxidizer it cannot be handled with unprotected hands. It is cap sensitive and detonates at 7600 M/sec. It is one of the most attractive plastique explosives due to the easy acquisition of all its ingredients. MANUFACTURE- In a quart jar place 415 grams of 95% nitric acid (see nitric acid section). 85 grams of polystyrene powder is added. Powdered polystyrene is made by placing the polystyrene foamed beads in a blender a few at a time. Blend at high setting until powdered sufficiently. After adding all the polystyrene heat to 40 degrees C. in an oil or water bath with stirring and continue stirring for 30 minutes. The compound will set up and become a tacky gell suitable for plastique explosive applications. CAUTION: Nitric acid is corrosive. Use great care when handling and avoid breathing its fumes. Avoid all contact with the acid and the finished product. Wear protective clothing and safety equipment. Proceed only in an area with excellent ventilation! RED PHOSPHOROUS-COFFEE-SILICONE OIL- This plastique is powerful and cap sensitive. It is a high performance explosive with a 60% dynamite equivalency. It is very similar to the composition in Kitchen Improvised Fertilizer Explosives. It uses this explosive's high power and cap sensitivity coupled with a polymerized silicone oil. The addition of the dried coffee (e.g. instant, freeze dried) and raises the detonation velocity greatly and subsequently the power. It is simple to prepare, powerful and cheap. These parameters are very important to the home explosives manufacturer. MANUFACTURE- Powder 190 grams of ammonium nitrate (powdered fertilizer) and place in a wide mouthed container of glass or stainless steel. To this is added 7 grams soybean oil, 2 grams red phosphorous. This is carefully stirred until a uniform mixture is formed. In a separate container place 14 ml water. In a separate container mix 8 grams of silicone oil (General Electric Product #SF-96 or equivalent) with 0.1 grams of benzoyl peroxide. Heat this mixture to 120 degrees C. for ten minutes until a stiff gell is formed. It is then kneaded with gloved hands into the powdered explosive in the other container. Knead this composition until it is of a uniform consistency. When uniform knead in 1 gram of instant coffee. Glassmicro balloons can be used here instead of said instant coffee. When this mixture has been kneaded to a highly uniform mixture the explosive is ready for use. This explosive can be considered the equivalent of 60% straight dynamite and is sensitive to a #6 blasting Gap at temperatures as low as -10 degrees F. SILICONE OIL/R.D.X. PLASTIQUE #2 This explosive like others in this section makes use of the tendency for some selected silicone oils to polymerize. This results in a gel matrix of very fine qualities. Resulting explosives prepared with cyclonite are nearly a equivalent of C-4. They have a slightly lower detonation velocity. They do however exhibit good plasticity from -65 to 170 degrees F. This would make a good choice for a C-4 alternate explosive. Charges would have to be increased 15-25% to obtain a use equivalence to C-4. A good choice for all demolition uses. Detonation velocity will be around 7000 M/sec. This explosive is easier to make than C-4. This is due to the ease of preparation of the silicon plasticizer. C-4 is used by the military due to the cost difference in these explosives. C-4 uses "cheaper" plasticizers than does this composition. It can be considered a C-4 equivalent for all practical purposes. MANUFACTURE- Two parts of polymerized silicon paste (Dow Corning Silastic 126 or equivalent) was mixed, in a beaker or stainless steel pan, with 3 1/2 parts polymerizable silicon oil (General Electric Silicon Oil #9981 or equivalent). This mixture then would have 0.025 parts benzoyl peroxide added. This cream like mixture would then be heated slowly to 150 degrees C. This heating should be done over a period of fifteen minutes. It is then allowed to cool. It will thicken somewhat with cooling. Take 410 grams R.D.X. and 45 grams of the gell and place them in a plastic dish (dishpan). Knead the components together until a uniform mixture is obtained. The resulting putty can be considered the equivalent of C-4. It is very storage stable and safe to manufacture. fnord. This results in a gell matrix of very SILICONE OIL/NITRO MANNITE PLASTIQUE #3 This plastique is easily made. Precursors would be simple to obtain. Nitro mannite is a high explosive with great power. It's power is close to that of nitroglycerin. From the same token the sensitivity to shock and friction are also similar. Nitromannite's manufacture process is covered in Kitchen Improvised Blasting Caps. I believe the addition of the silicon gell to this explosive would desensitize it somewhat. Nitromannite is sensitive to elevated storage temperatures so they would be best avoided. Nitromannite has a detonation rate of 8200 M/sec. #4 or #3 blasting caps would most likely set this explosive off well. This is due to the high sensitivity of the nitromannite explosive filler. MANUFACTURE- Take 1 parts by weight of silicone paste (Dow Corning Silastic 126 or equivalent) and 2 parts silicone oil (Dow Corning product #9996 or equivalent) and place in a stainless steel pan. Add to this .015 part benzoyl peroxide. Stir in well. Heat this mixture to 135 degrees for 15 minutes and let the thick gell cool. Fifteen parts of this gell are added to 85 parts nitromannite (See Kitchen Improvised Blasting Caps). These are kneaded until a very uniform consistency exists. CAUTION: Nitromannite is a very sensitive explosive. Great care would be needed in handling this explosive. Friction and shock sensitivity is the same as nitroglycerin. This explosive is flame sensitive. Ignition of this explosive could very well cause it's detonation. SILICONE OIL/AMMONIUM PERCHLORATE PLASTIQUE #4 This plastique is easily made. Precursors are very simple to obtain. This mixture of ammonium perchlorate and copper chromite has all the power that R.D.X. has. I do not believe the detonation velocity will be as high however. It is cap sensitive and very powerful. The copper chromite component of this explosive composition is available as a chemical reagent and as a catalyst. Ammonium perchlorate is widely available as an oxidizer in pyrotechnics, solid rocket propellants, and JATO motor construction. This explosive plastique would be a very good choice if the precursors are available. MANUFACTURE- Take 1 parts by weight of silicone paste (Dow Corning Silastic 126 or equivalent) and 2 parts silicone oil (Dow Corning Product #9996 or equivalent) and place in a stainless steel pan. Add to this .015 part benzoyl peroxide. Stir in well. Heat this mixture to 135 degrees for 15 minutes and let the thick gell cool. In another container 95 parts of ammoniüm perchlorate are mixed carefully with 5 parts copper chromite. These are of course finely powdered before mixing. Mix these together until a uniform mixture is obtained. Fifteen parts of this gell are added to 85 parts the explosive mixture from above. This mixture is kneaded until a very uniform consistency exists. This will yield an explosive of great power and very good plasticity. One would want to use a #8 cap for this explosive to ensure good performance. SILICONE OIL PLASTIQUE #5 This plastique is a good choice. It can use a variety of explosives for the main explosive in the compositions. These are: Picric Acid (Kitchen Improvised Plastic Explosives), Nitro Starch, P.E.T.N., R.D.X., Pentryl, T.N.T., Tetranitronapthalene (Kitchen Improvised Blasting Caps) and other crystalline high explosives. Of course the detonation velocity will vary per explosive filler used. This plastique will exhibit good plasticity from -60 to 170 degrees F. MANUFACTURE- A polymerizable silicone oil with a viscosity of 1000 centistrokes at 100 degrees F. is obtained (G.E. Silicone oil #81245 or equivalent). 500 grams of this oil would be placed in a stainless steel pan. 2.5 grams benzoyl peroxide is added and the mixture is stirred to mix. It is then heated to 125 degrees C. and held at that temperature for 10 minutes. This oil will polymerize to a thick tacky gell. This gel is added to 3.3 Kg. of one of the powdered high explosives (see above). This is kneaded in a plastic container until a very uniform mixture is obtained. The resulting doughlike mixture would then be ready for use. This plastique explosive should be sensitive to a #6 cap with most of the explosive fillers above. The exception would be T.N.T. It would require a #8 or larger cap for proper detonation. SILICONE PLASTIQUE #6 This plastique makes use of a polymerizable silicone oil matrix with a crystalline high explosive. This gives plastique explosives with good high and low temperature plasticity. Storage stability is good and the detonation velocity is very high as well as is the brisance. The oil is gelled by heating with benzoil peroxide. The gell formed is mixed with the powdered high explosive. This is kneaded with gloved hands until a uniform mixture is formed. High explosives used can be one of the following: R.D.X. (see Kitchen Improvised Plastic Explosives or section in this book), PETN (See Kitchen Improvised Plastic Explosives or the section in this book), Picric Acid (See Kitchen Improvised Plastic Explosives), Mannitol Octanitrate (see Kitchen Improvised Blasting Caps), Tetryl (see Kitchen Improvised Blasting Caps). Explosive performance will vary, of course, with the high explosive used. R.D.X. and P.E.T.N. will give the highest performance. This plastique is easily made and has very high performance. The precursors are not as easily found as other plastique formulations in this book. Detonation velocity will be between 6700 M/sec. to 8100 M/sec. This variation will depend upon the high explosive chosen. MANUFACTURE- Obtain a polymerizable silicone oil with a viscosity @ 100 degrees F., of 1000 centistrokes. Place 150 grams of the oil in a beaker. To this is added .75 grams of benzoyl peroxide. This peroxide is widely used as a catalyst in the plastic industry. The mixture is heated with stirring until the oil polymerizes into a stiff tacky gell. Mix this gell intimately with 850 grams of crystalline high explosive. This is mixed by stirring or kneading with gloved hands until a very uniform mixture is formed. This explosive is plastic from -65 degrees F. to 170 degrees F. It is sensitive to a #6 blasting cap. It is almost an equivalent of C-4 in power and in usability. NITRO GLYCOL-MFG. The manufacture of nitroglycol was covered in Kitchen Improvised Plastic Explosives. That process made use of ethylene glycol and it's subsequent nitration with a mixed acid solution. Ethylene glycol is a common chemical and should be widely available. The process below makes use of ethanol (drinking alcohol). It is by a reaction broken down into ethylene gas. This gas is then bubbled through a mixed nitration acid. The resulting nitrated product consists of nitroglycol and B-nitroethyl nitrate. This nitration product is separated by hydrolysis and the nitroglycol in a very pure state is obtained. Ethanol is easily manufactured from grain or sugar producing substances. A good book on this process is available from The Mother Earth News, P.O. Box 70 Hendersonville, NC, 28793. This book has a very simple vacuum still that produces 90% ethanol. This ethanol would work very well in this process. Nitroglycol is more powerful than even nitroglycerin and is much less sensitive. It's detonation rate is over 7800 M/sec. under ideal conditions. It makes very good plastique explosives. They are however cardiovascular dilators and great care should be used handling this explosive oil. MANUFACTURE- Place 75 ml ethanol alcohol in a 500 ml. earlenmeyer flask. In the top of this flask is placed a one hole stopper. Tubing is placed in this hole and the other end placed through one hole in the next two hole stopper. This stopper is placed in a 1000 ml. flask as above. In this second flask is placed 400 grams carbon (ground charcoal or coke) and 150 grams strong phosphoric acid. This is mixed well. The hose inserted in the stopper is pulled through the stopper until it contacts the bottom of the flask. In the second hole in this flask's stopper is placed another hose. In a 600 ml. beaker is placed 114 grams of nitric acid (95% and 186 grams of strong sulfuric acid (98%). The hose (316 stainless tubing) from the second flask is placed in this mixture such that it nearly touches the bottom of the beaker containing the mixed acids. The beaker should be surrounded by a salt ice bath to keep the temperature down. The first flask is heated. Ethanol vapors are generated and go through the hose to the second flask. In the second flask the ethanol vapors are reacted to form ethylene gas. This gas is conducted through the acid resistant hose (316 stainless tubing) and is bubbled through the mixed acid in the beaker. In this beaker the nitration will take place. If at any time this acid mixture's temperature goes above 30 degrees stop the gas generation until the temperature falls to an acceptable level. This ethylene gas is bubbled through the acid mixture until all of the ethanol is gasified in the first flask and has been forced into the second reaction flask This should complete the reaction. The nitro glycol mixed with beta nitroethanol nitrate will form a visible layer on top the acid mixture. This liquid is sucked off the top of the liquids with a syringe or similar device. This liquid is placed in a small beaker and warm water is added (80-90 degrees C.) and is very gently stirred and allowed to cool. This will decompose the beta nitroethanol nitrate. The nitro glycol will settle to the bottom of the liquid. Nearly all the liquid is poured off the nitroglycol leaving a small amount of water with the glycol. Bicarbonate of soda (baking soda) is added in small quantities until the effervescent reaction subsides with each new addition. This neutralizes the acid and the product is separated from the remaining water and is then ready for use. CAUTION: Ethanol and ethylene are very flammable. They should be used with great care to ensure that they are not ignited. Breathing these compounds should be avoided. Nitric and sulfuric acid fumes and contact with them or the chemicals should be avoided. This process should be done with very good ventilation. Nitro glycol is sensitive to shock, friction and flame. All contact with nitroglycol should be avoided as it will cause vascular dilation. Continued or repeated exposure could very well cause circulatory problems. Mixtures of alcohols and nitroglycol are much less friction and shock sensitive and are highly desirable (3/1 nitroglycol/alcohol). Care should be exercised to ensure the lack of acidity in the nitroglycol as this tends to make for an unstable compound! +-------------+ +-------------+ +-------------+ | | | | | | | Ethanol | | Carbon | | Mixed Acids | | | | | | | To Vent | |------>| Phosphoric |------>| Surrounded |-----> | | | Acid | | by ice bath | | | | | | to cool | | | | | | below 30øC | | | | | | | +-------------+ +-------------+ +-------------+ ^^^^ Heat, to boil NITROGLYCOL PLASTIQUE This plastique makes use of the tendency of nitroglycol to function as a sensitizing agent. While this explosive in all respects very similar to dynamite the addition of smokeless powder to the explosive forms very plastic mixtures. Nitroglycol is a very powerful explosive and should be used with great care. Any explosive containing nitroglycol. should be completely free of contaminants and acidity. This explosive is a mixture of nitroglycol, sodium nitrate and aluminum powder. Brisance of this explosive is very high. This is due to the nitroglycol and the aluminum powder in conjunction with the sodium nitrate oxidizing salt. While the detonation rate is not as high as other plastiques covered in this book the brisance is very high and this explosive could find use in blasting as well as different types of munitions loading. Another attractive aspect of this explosive is the relative low amount of nitroglycol required to achieve good performance. Moisture in this composition should be avoided as this could impair the performance and sensitivity of this explosive. MANUFACTURE In a plastic mixing bowl place 200 grams of fine aluminum powder (Alcan 2100 or equivalent). To this is added 200 grams of sodium nitrate and 25 grams of IMR series smokeless powder. This is mixed with a plastic spatula or stirring rod. CAUTION: Avoid friction and flame when handling these powders after their combination. This powder is very highly flammable and any source of ignition should be avoided. Combustion temperature of this powder will be in excess of 3000 degrees C. Of course avoid breathing the aluminum powder at all costs. Exposure to this dust can cause severe respiratory disfunction. When these are intimately mixed set this bowl aside. 50 grams of nitroglycol are mixed with 10 grams of acetone. This liquid is poured into the powdered ingredients in the bowl previously prepared. This mixture is kneaded with gloved hands until a uniform puttylike explosive remains. This is the explosive plastique. This explosive should be stored in a cool place in a sealed container. Evaporation of the acetone will result in a hardening of the putty. This can however be replaced by adding more acetone to the mixture and kneading again with gloved hands until the desired consistency is obtained. This explosive will have a greater brisance than T.N.T. and a detonation rate of 6000 M/sec. P.E.T.N. Pentaerythrite tetranitrate is a powerful explosive used in many plastique explosive compositions. It is also the main ingredient in primacord. It is also the main explosive component in Detaflex explosives as made by DuPont. It is an explosive of greater power than R.D.X. and has a somewhat greater sensitivity to caps than does R.D.X. It is powerful and cheap. This manufacture process has a very high yield with a good stable product as a result. It is also a good choice for a blasting cap base charge explosive. Detonation velocity is 8500 M/sec. This is at 1.65 G/cc. density. The pentaerythrite is the reaction product of four mole weights of formaldehyde and one mole weight of acetaldehyde. This is reacted in a warm aqueous solution in the presence of calcium hydroxide. To nitrate this compound 95% nitric acid and pentaerythrite are all that are needed. Pentaerythrite is available as a common industrial chemical in the resin and paint/varnish industries. MANUFACTURE- Place 400 ml. of strong nitric acid from nitric acid manufacture process in an 800 ml. beaker in a salted ice bath. Add three grams urea (fertilizer) to the acid and allow to cool. One hundred grams of finely ground pentaerythrite is added to the acid a little at a time with stirring. Addition is done such that the temperature of the acid mixture does not go above 5 degrees C. After all the P.E. has been added the mixture is stirred while keeping temperature below 5 degrees C. for 20 minutes. This mixture is then poured into three liters of water and cracked ice. The 220 G. of crude product is filtered out of the solution and washed three times with cold water. It is then placed in a hot 0.5% solution of water and baking soda (sodium bicarbonate). It is then filtered out and washed again and dried. It is then dissolved in the least amount possible of hot acetone and allowed to cool. The crystals will fall out of the solution and are filtered out. The volume of the acetone is reduced to 1/3 it's original volume by boiling and cooled and filtered again. The combined crystals are then dried and are then ready to use. CAUTION: Acetone is very flammable. Keep away from all sources of ignition and avoid breathing the acetone vapors! DETAFLEX EQUIVALENT PLASTIQUE This commercial explosive is very popular for a multitude of uses. It finds uses from agricultural uses to specialty shaped charge fabrication to sever offshore oil platform legs off. This is one of the best of the commercial demolition explosives. It also finds a good use in explosive welding of metals and other operations of this type. This explosive is very similar to the C-4 composition given earlier. In fact they can be considered equivalent. P.E.T.N. is a very powerful explosive. It is actually more powerful than R.D.X. but is also more friction and impact sensitive. It makes use of polyisobutalene with ethylhexyl sebecate or ethylhexyl adipate as the plasticizer. Also small amounts of 10 weight motor oil are added to increase the plasticity and consistency of the explosive. One would exercise care in handling P.E.T.N. due to it's friction sensitivity. In the explosives industry P.E.T.N.is kept water wet until ready for final manufacture into explosives. These plasticizers are incorporated into explosive plastiques commercially by heating with the solvent until dissolved. Water wet R.D.X. or P.E.T.N. is then added and the heat with stirring is continued under reduced pressure. This is the quickest method and yields the most uniform product. But this process is not feasible as other simpler processes work with good results. MANUFACTURE Place 12 grams of polyisobutalene in a container with 70 mi of unleaded gasoline ("white gas"). CAUTION: Avoid skin contact with the gasoline and keep away from all sparks and open flames. Gasoline is highly flammable! Great care should be used to ensure fumes are avoided. When the PIB has dissolved 2.5 grams of 10 weight nondetergent motor oil is then added. This is allowed to evaporate to 1/2 it's original volume. To this is added with stirring 2.5 grams of ethylhexyl sebecate or ethylhexyl adipate. The mixture will begin to thicken. To this thickened mixture add 200 grams of P.E.T.N. and the mixture stirred until thoroughly mixed. This is allowed to set with occasional kneading until completely free of gasoline. When the gasoline smell is gone the grey to off white pütty is rolled out like bread dough with a rolling pin. This is rolled out to 2-3 mm thick sheets and cut to size. The resulting sheets of high explosive are then ready for use. This explosive is better in thin layers than is C4. This is due to the greater sensitivity of the P.E.T.N. explosive component. This explosive is storable for 10 plus years with no decrease in performance. Sensitive to a #6 ASA blasting cap. NITROSTARCH-MFG. Nitrostarch is a powerful explosive. It can be considered the equivalent of nitrocellulose. With a detonation velocity of 6200 M/sec. (13% nitrogen) at a density of 1.5 G/cc., it is very powerful. It has the drawback of being very sensitive to friction and residual acid in the finished product. Acidity can be controlled by neutralization of the acid in the product with ammonia. This effectively neutralizes all acid in the nitrostarch product rendering a stable product. While P.E.T.N and R.D.X. are a good deal more powerful than N.S. it is still an attractive explosive due to the ease of manufacture and the ease of acquisition of the required ingredients. Nitric acid is produced by the process described elsewhere in this book. Sulfuric acid is available as drain opener from janitorial and plumbing suppliers. Starch is available in the grocery store. Corn starch will work but tapioca starch is much preferred for this process. MANUFACTURE- Place 305 grams of 95-100% acid in a 2000 ml beaker or equivalent. To this is added slowly 500 grams sulfuric acid (97-100%). This mixing will generate heat. Cool this acid mixture to 32 degrees C. Surround the acid mixture container with a cool water bath. Begin the addition with vigorous stirring of 200 grams of tapioca starch. This addition should be done in small quantities. Regulate the temperature by the speed of addition. Temperature should be maintained between 35 40 degrees C. After the addition is complete continue stirring for 5 minutes. Pour this acid mixture into twice it's volume of cracked ice water. The nitrostarch will fall out and should then be filtered out. Wash this granular material three times with cold water. This washing is of course done by pouring water through the material in the filter paper. This material is then removed and placed in a container and 400 ml water is mixed with it. Begin to add clear ammonia water (grocery stores) to the liquid. Check the pH reading with test paper (E. Merick brand). Continue adding the clear ammonia water in small portions until the PH reading is 9. Filter out the product and again wash with three 200 ml. washings of clear water. The material is then dried and is ready for use. CAUTION: Nitrostarch is friction and shock sensitive. It is also very flame sensitive. This compound is a high explosive and should be treated with great care. NITROSTARCH PLASTIQUE-MFG. Nitrostarch has been used a good deal in the explosives industry. This is due to it's low cost and easy manufacture. It can be considered almost an equivalent of guncotton. Nitrostarch is a good base explosive in plastiques. It is overshadowed by R.D.X. and P.E.T.N. as well as other high explosives- However starch (tapioca, corn, potato) is widely available from grocery stores. This explosive formulation has the disadvantages of poor storage and very limited plasticity. It is however quick and simple to manufacture. A homemade grade of nitrostarch would very likely have residual acidity which would cause storage instability. This explosive uses nitrostarch in conjunction with short fiber wheelbearing grease to form the needed plastique. CAUTION: Avoid all flame and friction when handling nitrostarch. It is highly flammable and friction could cause the premature explosive of this compound. Also avoid breathing the dust and skin contact would best be kept at a minimum. This explosive would be cap sensitive to a #6 blasting cap or equivalent. Detonation rate would be around 5500-5900 M/sec. MANUFACTURE- In a pan place 10 grams of short fiber wheel bearing grease. Heat this grease until it melts. Let this cool to 75 degrees C. Pour this into 100 grams of nitrostarch. Knead this with gloved hands. This is kneaded until a uniform mixture is obtained and the material is then ready for use or storage. Care taken during the manufacture of the nitrostarch to ensure the absence of acidity is highly recommended for storage stability. PENTRYL (Trinitro N Nitranilino Ethanol Nitrate)- Phenylethanolamine after nitration forms Pentryl. This is not to be confused with eutectic mixtures of P.E.T.N. and other high explosives. They are called pentryl also. Pentryl is a very powerful high explosive. It's detonation velocity is 7300 M/sec. It is 118% as powerful as picric acid and 130% greater than T.N.T. It is formed by the nitration of phenylethanolamine. Phenylethanolamine is used in the chemical industry to inhibit the hardening of styrene plastics. It also finds uses as a chemical intermediary in other chemical processes. This explosive is very much more sensitive than T.N.T. and picric acid to friction. Toxicity is listed as low. Exposure is limited to dermititus and other mild symptoms. This compound should not be ingested and contact should be avoided. It is unattractive due to the P.E.A. Precursor and it's acquisition. It is easy to make and has very high power. It would make a good choice for plastique explosive manufacture. Other necessary ingredients are sulfuric acid (100%) and nitric acid (90%). These are readily available or can be made. MANUFACTURE- Place 1000 grams of sulfuric acid (95%) or equivalent. To this is added 100 grams of Phenylethanolamine with stirring. This addition is done so that the temperature of the acid does not rise above 30 degrees C. After the P.E.A dissolves in the acid the mixture is added slowly over 15 minutes to 720 grams of 90% nitric acid. The temperature is maintained during this addition at 25-30øC. After all the P.E.A./sulfuric acid is added the mixture is stirred for 30 minutes at 30 degrees C. The temperature is then raised to 40 degrees and stirred for 30 minutes. The temperature is then raised to 50 degrees for thirty more minutes with stirring discontinued. This mixture is then poured into 3 times it's volume Of water/ice and the resulting product is filtered out. lt is then washed three times with 600 ml water. Then the product is washed with 500 ml water add 25 grams of sodium bicarbonate (baking soda). lt is again washed with S00 ml of fresh water and dried. This product is Pentryl. lt may be recrystallized from benzene if desired for purification. POTASSIUM PERCHLORATE PLASTIQUE This explosive makes use of potassium perchlorate as an oxidizer with several high energy fuels. Plasticity is gained by the addition of a crankcase oil viscosity increaser such as S.T.P. Oil Treatment. Also the addition of finely powdered flake aluminum gives this explosive a very high detonation temperature. Temperature of the detonation will be 3000 4000 degrees C. This explosive will not have the high detonation velocity of some of the other explosives in this book. Blast coefficient will be very high with the free hydrogen giving a secondary air blast due to it's secondary combustion. This explosive would not be a good choice for shaped charge application as it's detonation velocity will be too low. It could be used for a variety of other demolition type uses however. MANUFACTURE- Place 400 grams of potassium perchlorate in a plastic mixing bowl. Add to this 140 grams of finely powdered aluminum (400 mesh). This is mixed very well with a wooden or plastic stirring rod or spoon. CAUTION: When the aluminum powder and potassium perchlorate is mixed it is flame and friction sensitive. Great care should be used when mixing these compounds together. Also breathing of aluminum dust is very hazardous and proper precautions should be taken to avoid this (respirator). When these two components are well mixed add 18 grams of motor oil additive (S.T.P. Oil Treatment) and knead carefully into the powder. Of course the kneading is done by hand with gloved hands. This is kneaded until a very uniform mixture is obtained. The resulting grey putty is then ready for use. It can be stored for a good length of time but the mixture should be kneaded well before being stored. Comparison of approximate detonation velocities m/sec +--------------------------------------------------------+ 8500 | | 8000 | %%%% %%%% | 7500 | %%%% %%%% %%%% %%%% %%%% | 7000 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 6500 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 6000 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 5500 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 5000 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 4500 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 4000 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 3500 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 3000 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 2500 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 2000 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 1500 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% | 1000 | %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% | Z %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% Z +--------------------------------------------------------+ 1 2 3 4 5 6 7 8 9 10 11 1: TNT, 6700 m/s 2: C-4, 8200 m/s 3: Methyl nitrate plastique #1, 7800 m/s 4: Nitric acid plastique #1, 7600 m/s 5: Silicone plastique #1, 5200 m/s 6: Silicone plastique #3, 7800 m/s 7: Silicone plastique #2, 8000 m/s 8: Composite plastique #1, 5500 m/s 9: Nitro Methane plastique #1, 7500 m/s 10: ANFO, 2500 m/s 11: 60% Dynamite, 5800 m/s -------------------------------------------------------------------------